

USING ARGONNE'S WATER POWER MODELING TOOLS

Enabling Decision-Making and Project Planning

Argonne's models are used in more than 40 countries

Argonne helps to:

- Optimize the utilization and management of water and hydropower resources through modeling and simulation of complex water resource and hydropower operations.
- Transfer Argonnedeveloped models to users worldwide – GTMax, EMCAS, CHEERS models.

GTMax GENERATION AND TRANSMISSION MAXIMIZATION

GTMax optimizes power system operations, power exchanges with other systems, and market transactions.

How does GTMax help users?

- □ **GTMax** helps to maximize revenues by optimizing hydro and thermal generation, water flows, and reservoir management.
- □ **GTMax** simulates regional and national electricity systems, helping plant owners, utilities, and grid operators maximize the value of hydropower by optimizing plant operations and market transactions.
- □ **GTMax** simulates spot market transactions and quantifies operational costs.

GTMax — Generation and Transmission Maximization

ARGONNE'S WATER POWER MODELING AND SIMULATION TOOLS PERFORM:

- Production cost modeling, optimization of power system operations, and investment decision-making.
- Optimization of hydropower plant and reservoir management.
- □ Integration of variable energy resources and storage.
- Electricity market, economic, and environmental analyses.

CHEERS

CONVENTIONAL HYDROELECTRIC AND ENVIRONMENTAL RESOURCE SYSTEMS

CHEERS has unique capabilities to simultaneously optimize water, power, and environmental functions.

How does CHEERS help users?

- CHEERS helps operators manage water and power systems by producing day-ahead and real-time operation schedules.
- CHEERS produces schedules to guide when, where, and how to:
 - Release water from storage, serve customer loads and manage energy exchanges.
 - o Produce/buy/sell energy and ancillary services.
- ☐ Typical **CHEERS** results include:
 - More efficient water use and cost-effective transactions.
 - Less generator ramping, and fewer unit starts and stops.

CHEERS — Conventional Hydroelectric and Environmental Resource Systems

EMCAS

ELECTRICITY MARKET COMPLEX ADAPTIVE SYSTEMS

EMCAS uses advanced agent-based simulations to analyze restructured power markets affecting pumped-storage and hydropower plant operations.

How does EMCAS help users?

- □ **EMCAS** simulations use agent learning and adaptation based on performance and changing conditions.
- EMCAS evaluates market strategies, analyzes market participants with decentralized decision-making, and captures user-specified market rules affecting system behaviors.
- □ **EMCAS** simulations are used for:
 - Price forecasting, resources/asset evaluation, and portfolio analysis.
 - Power analysis, volatility/risk analysis, and market monitoring/design.

EMCAS — Electricity Market Complex Adaptive Systems

Vladimir Koritarov

Manager, Water Power Program Energy Systems Division Argonne National Laboratory Phone: 630-252-6711 Email: koritarov@anl.gov